Turbocharger, Turbo Repair Kits, Turbo Thrust Bearings, Turbo Piston Ring, Compressor Wheel
Home Home E-mail E-mail
Location > Home Page
Products Catagory
Turbocharger
For Saab
For Komatsu
Suit For Caterpillar
Suit For Hitachi
Suit For Perkins
Suit For Cummins
For Kobelco
For Daewoo
For Kato
For Hino
Main Components
Electronic Actuator
Shaft
bearing housing
compressor wheel
compressor housing
Repair Kit
oil seal plate
Turbine housing
Cartridge
The rear panel
Contact Us

 

Fengcheng Mingxiao Turbocharger Mfg Co.,Ltd

Factory Add:Area B, Central Park of Erlongshan Industrial Park, Fengcheng ,Liaoning,China

Branch Office:Huangpu Huanyu International Construction Machinery Market,No.8 Zhongshan Road ,Huangpu District,Guangzhou

Tel: +86-20-32291788 / 32233365

Fax: +86-20-32291588

Mail:  mxturbo@163.com  sales2@mxturbocharger.com   jim.mingxiao@gmail.com  

 Skype: louisehuan

Yahoo Messenger: mxturbo

 www.mxturbocharger.com

 

News
Supercharging&Turbocharging

Supercharging and turbocharging

The term supercharging technically refers to any pump that forces air into an engine—but in common usage, it refers to pumps that are driven directly by the engine as opposed to turbochargers that are driven by the pressure of the exhaust gases.

Positive displacement superchargers may absorb as much as a third of the total crankshaft power of the engine, and in many applications are less efficient than turbochargers. In applications where engine response and power is more important than any other consideration, such as top-fuel dragsters and vehicles used in tractor pulling competitions, positive displacement superchargers are extremely common. Superchargers are generally the reason why tuned engines have a distinct high-pitched whine upon acceleration.

There are three main styles of supercharger for automotive use:

* Centrifugal turbochargers—driven from exhaust gases.
* Centrifugal superchargers—driven directly by the engine via a belt-drive.
* Positive displacement pumps—such as the Roots and the Lysholm (Whipple) blowers.

The thermal efficiency, or fraction of the fuel/air energy that is converted to output power, is less with a mechanically driven supercharger than with a turbocharger, because turbochargers are using energy from the exhaust gases that would normally be wasted. For this reason, both the economy and the power of a turbocharged engine are usually better than with superchargers. The main advantage of an engine with a mechanically driven supercharger is better throttle response, as well as the ability to reach full boost pressure instantaneously. With the latest Turbo Charging technology, throttle response on turbocharged cars is nearly as good as with mechanical powered superchargers, but the existing lag time is still considered a major drawback. Especially considering that the vast majority of mechanically driven superchargers are now driven off clutched pulleys, much like an air compressor.

Roots blowers tend to be 40–50% efficient at high boost levels. Centrifugal Superchargers are 70–85% efficient. Lysholm-style blowers can be nearly as efficient as their centrifugal counterparts over a narrow range of load/speed/boost, for which the system must be specifically designed.

Keeping the air that enters the engine cool is an important part of the design of both superchargers and turbochargers. Compressing air makes it hotter—so it is common to use a small radiator called an intercooler between the pump and the engine to reduce the temperature of the air.

Picking any method of compression that cannot support the mass of airflow needed for the engine creates excessive heat in the air/fuel charge temperatures. This is true with all forms of supercharging. It is critical to not under-size the component.

Turbochargers also suffer (to a greater or lesser extent) from so-called turbo-spool in which initial acceleration from low RPMs is limited by the lack of sufficient exhaust gas mass flow (pressure). Once engine RPM is sufficient to start the turbine spinning, there is a rapid increase in power as higher turbo boost causes more exhaust gas production—which spins the turbo yet faster, leading to a belated "surge" of acceleration. This makes the maintenance of smoothly increasing RPM far harder with turbochargers than with belt-driven superchargers which apply boost in direct proportion to the engine RPM.

Turbo-spool is often confused with the term turbo-lag. Turbo-lag refers to how long it takes to spool the turbo up when there is sufficient engine speed to create boost. This is greatly affected by the specifications of the turbocharger. If the turbocharger is too large for the power-band that is desired, needless time will be wasted trying to spool-up the turbocharger.

By correctly choosing a turbocharger, for its use, response time can be improved to the point of being nearly instant. Many well-matched turbochargers can provide boost at cruising speeds. Modern practice is to use two small turbos rather than one larger one, see Sequential, Twin and Compound turbochargers below.

Centrifugal superchargers suffer from a form of turbo spool. Due to the fact that the impeller speed is directly proportional to the engine RPM, the pressure and flow output at low RPM is limited, thus it is possible for the demand to outweigh the supply and a vacuum is created until the impeller reaches its compression threshold. This is not a great problem for aero-engines that almost always operate in the top half of their power output, but it is not much help in a car.

There are also acts of combining both turbocharging, and a positive displacement supercharger (VW 1.4TSI). By compressing air first in the turbocharger, and feeding it to the supercharger. By running more compression in the turbocharger, efficiency is improved as superchargers are less efficient.

There is also another type of compound system called turbocompound, this system implements the turbine section of a turbocharger, it does not have a compressor instead it converts the energy from the exhaust into kinetic energy that is then used to add power to the crank shaft.

Still other combinations are possible—there are after-market kits for several supercharged cars to add a turbocharger either before, after or in parallel with the supercharger. In this manner the supercharger operates alone at lower RPMs and the turbo either takes over from—or adds to the supercharger once there is sufficient exhaust gas pressure available.

The downside of supercharging is that compressing the air increases its temperature. When a supercharger is used on an aircraft, manifold air temperature becomes a major limiting factor in engine performance, as extreme temperatures will cause pre-ignition and/or detonation of the fuel-air mixture and damage to the engine. This caused a problem at low altitudes, where the air is both denser and warmer than at high altitudes. Pilots were taught to watch their manifold pressure gauge and not push it past redline, yet the manifold pressure gauge ignores the effect of temperature on engine performance and life. Several solutions to this problem were developed: intercoolers and aftercoolers, anti-detonant injection, two-speed superchargers and two-stage superchargers.
 

Keyword:Turbo Repair Kits , Turbo Thrust Bearings , Compressor wheel , Turbo Piston Ring , Turbocharger , Turbocharger parts , Aluminum Die Casting , Airbrush , Sand Casting , Die Casting , Pneumatic cylinder , Electric hoist , Aluminum Case , Kitchen faucet , Aluminum composite panel , Aluminum Sand Casting , NdFeB Magnets , LED Display , Permanent mold casting , Ceramic Balls , Hydraulic Valves , Precise Alloy , Windshield wiper , Chain hoist , Cross flow fan